

Evaluating Organizational Change

Geoffrey P Morgan

gmorgan@cs.cmu.edu

Dissertation-Related Work

Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

SI 2016

MOTIVATION AND OVERVIEW: EVALUATING ORG CHANGE

Human organizations change all the time, and it's a big deal

- Hundreds of firms either specialize or have specific consulting departments for "organizational restructuring"
- 90% of companies with more than a 1000 employees has recently restructured (BCG, 2012)
- Lots and lots of mergers:
 - Major merger firms handled more than 1000+ mergers in the first half of 2013, for a total valuation of more than 400B (NYTimes, 2013)
 - In terms of valuation (NYTimes, 2013):
 - 40% Happened in the US
 - 60% happened in the rest of the World

These changes rarely produce desired outcomes.

Organizational restructuring failure rate is between 50 to 70%

Merger failure – Estimates vary, but even the most conservative estimates suggest that merger success is a 50/50 proposition.

Why do these efforts fail?

• Major reason is **Cultural Issues**

- Lack of clarity in leadership
 - Shared values improve information transfer (Weick 1987)
 - Without shared values and knowledge, actors have difficulty communicating new goals (Wilson and Ferch 2005)
- Lack of clarity in proposed direction (why is this change a good idea?)
 - Actors do not do tasks unless given reasons to identify with those tasks (Sheldon, Turban et al. 2003)
 - Guidance from management that ignores or contradicts functional work practice exposes the organization to significant risks (Nathanael and Marmaras 2006)
- Incompatible corporate cultures

SI 2016

We use surveys to use evaluate corporate culture

- Multi-National Merger and Acquisition has been dealing with this for some time (Shimizu, Hitt et al. 2004)
- But domestic merger analysis has also been looking at incompatible corporate culture as a source of failure (Epstein 2005) (Holt, Armenakis et al. 2007)
- Principally, surveys are used to evaluate corporate culture and then develop suggestions for intervention and remediation

But, surveys of org culture are difficult to do well

• Fixed points in Time

SI 2016

- Limited employee exposure
 - Often, survey responders will be self-selected
 - Penetration below executive layer is rare
- Surveys can alarm employees
- Implicit demand characteristics (Orne 1962) can overwhelm

Is there another method we can use to supplement survey techniques?

Organizations generate lots of data

Already frequently leveraged

Financials

Frequently ignored

Collaborative Wikis and Code Repositories

SI 2016

Meta-Networks are ways of representing many relationships

	Agents	Knowledge	Tasks
Agents	"Who Talks to Who"	"Who knows what"	"Who does what"
Knowledge		"What knowledge is linked to what"	"What must be known for each task"
Tasks	Typical PCANS semantics		"What tasks are related to what"

Adapted from Lanham, Morgan, and Carley (2011)

Geoffrey P Morgan

DATA DESCRIPTION

Geoffrey P Morgan

SI 2016

The (Very Excellent) Data

- Fortune 500 Company, purchased another large company
 - Wants to understand the integration process
 - Asked academic researchers if they wanted to help
- Allowed collection of email-server data for multiple months at two points in time
 - Collection Period 1: Right after merger announcement
 - Collection Period 2: A year later
 - Collection Period 3: Another year later
- Encouraged employees to participate in org surveys administered by research team

Survey Data

- Survey was run on a sub-sample of employees. The survey collected various indices, including:
 - Organization Culture (Denison and Mishra 1995)
 - Job Satisfaction (Cammann, Fichman et al. 1983)
 - Commitment to the Organization (Allen and Meyer 1990)
 - Group Identification (van Dick, van Knippenberg et al. 2008)
 - Perceptions of Organizational Justice (Niehoff and Moorman 1993)
- 4849 People surveyed, Year 1
- 4915 People surveyed, Year 2
- 4300 People surveyed, Year 3

SI 2016

~11,000 People surveyed in total

Email: Structured and Unstructured Elements

- As discussed over the week, email is interesting (and difficult) because it includes both structured data and unstructured data
- Structured Data
 - Timestamp
 - From
 - To, CC, BCC
- Unstructured Data
 - Subject

Email Dataset

- Filtering:
 - English Emails (identified by Tika API)
 - Sent to a small group of people (less than 7)
 - At least one sender and receiver must have taken the survey in any of the three years
- After filtering to 'known actors' from surveys
 - Timeperiod 1 : 233k Emails
 - Timeperiod 2 : 700k Emails
 - Timeperiod 3 : 1M Emails
- Average Subject Length: 32 Characters
- Average Body Length:
 - Total Characters (includes replies): 2000 Characters
 - Novel* Characters: 184 Characters

* We wrote code to scrape off reply-chains

SI 2016

CASOS

SI 2016

Email Draws over Time

Concentration of Email by Time-Stamp (Unix Epoch Time)

Email Draws Show Expected Frequencies

Concentration of Email by Time-Stamp (Unix Epoch Time)

Distribution of Languages

CASOS

SI 2016

Distribution of Unstructured Content Lengths

Internal Email Interactions

Employees - Colored by Legacy, Sized by Emails Sent and Received (Direct To/From)

WORKING WITH AND MEASURING CONTENT

G.P. Morgan

De-Identification

- Legal Requirement!
- Used Stanford NER (Named Entity Recognizer) to identify and then de-identify:
 - People
 - Locations
 - Organizations

De-Identifying Entities Consistently in Unstructured Content

- First, identify and create anonymous mappings for all NER tokens
 - Replace proper names with tokens:
 - "Jean Paul" = "Name_1"
 - "Abe Lincoln" = "Name_2"
 - Replace locations with tokens:
 - "San Francisco" = "Location_1"
 - "New York" = "Location_2"
 - Replace organizations with tokens
 - "Bank of Omaha" = "Org_1"
 - "IKEA" = "Org_2"
- Replace all numeric characters with `#'
 - ###-###+###
 - ##-###
 - ##,###

Carnegie Mellon

CASOS ST

Using Content as a Proxy for OrgCulture

- Every organization has its unique jargon, informed by the collective backgrounds and contributions of all members.
- Can we identify words or tokens that are consistently and regularly associated with LuxuryCo and StandardCo?
- 2. Is the overall language of LuxuryCo and StandardCo becoming more or less similar?

Token Score

- For token *t* of all Tokens T, we have group A, G, and a Prior P
- We have two terms:

CASOS SI

- the token's odds score based on percentage appearance in the A and G's documents, but we flatten out marginal cases
- the token's appearance in A or G (depending on the odds ratio outcome) subtracted against the percentage appearance of the token in Prior P

S(t) = flattenedOdds(t) * freq(t)

$$flattenedOdds(t) = abs(odds(t)) > .1, odds(t)$$
$$else, 0$$
$$odds(t) = \left(1 - \left(\frac{1}{\left(\frac{|t_A|}{|T_A|}/\frac{|t_G|}{|T_G|}\right)}\right)\right) - .5$$
$$freq(t) = odds(t) \ge 0, max\left(\frac{|t_A|}{|T_A|} - \frac{|t_P|}{|T_P|}, 0\right)$$
$$odds(t) < 0, max\left(\frac{|t_G|}{|T_G|} - \frac{|t_P|}{|T_P|}, 0\right)$$

Copyright © 2014 CASOS, ISR, CMU -- Kathleen M. Carley - Director

CASOS SI

Example, "relax"

Group A uses "relax" 100 times in a corpus of 10,000 total word instances. Group B uses it 10 times in a S(t) = .002775 = .3 * .00925corpus of 5,000 instances. The Prior P flattenedOdds(t) = .3 = abs(.3) > .1, .3else, 0 has the word 30 times $S = odds(t) = .3 = \left(1 - \left(\frac{1}{\left(\frac{100}{10000}/\frac{10}{5000}\right)}\right)\right) - .5$ out of 40,000 instances.

$$freq(t) = .00925 = .3 \ge 0, max\left(\frac{100}{10000} - \frac{30}{40000}, 0\right)$$

Difference Score

• We can sum the absolute value of the token scores to evaluate how different the two groups are in language after accounting for a prior

$$Score(T, A, G, P) = \sum_{t} s(t)$$

Concerns/Limitations

- Instead of an arbitrary threshold for flattening, maybe consider a transformation function
- The choice of Prior is important
 - I used a time sensitive prior from email senders who did not take the survey
- Cleaning the text corpus remains important
 - But the cleaning is easier
 - Focused on removing rare words
 - Why?

CASOS SI

- "Rule of 3" would generally resolve the issue
- Removing very common ("the", "a", "an") stop words may help

Illustrative Graphic, Late 2013

CASOS SI

Overall Scores, Text Corpus

These charts *suggest* different things! **Left:** Extant identities are mostly stable

Right: Identities are differentiating in response to interaction with the other

CLEANING IS IMPORTANT

CASOS

6/12/2009

STRUCTURAL COMPARISON

Copyright (c) 2009 CASOS, ISR, CMU -- Kathleen M. Carley - Director

Visualizations, Early 2013

Visualizations, Late 2013

Visualizations, 2014

1505

6/12/2009

Structural Measures

In-Group Interaction

Louvain Modularity

C |

Network-Level Measures

Hierarchy

6/12/2009

Average Speed

Jan-2014